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ABSTRACT

Four series of structural models, consisting of 10Z small machined

spherical shells, were tested to study the effect of unsupported shell

length on both their elastic and inelastic buckling strength. The four

series consisted of models represerting complete spheres, clamped

spherical segment models with included angles ranging from 5 to 300 deg.

and stiffened hemispherical models. The collapse pressure of the

complete spheres was adequately calculated using the empirical equation

earlier developed at the Model Barin. Whereas previous experiments on

spherical shells with clamped edges recorded in the literature show a

complete lack of repeatability, the results of the present models follow a

definite pattern. These tests demonstrate that the unsupported shell

length mt-st be relatively short to provide an increase in strength of a

spherical segment over that of a complete sphere. They also demonstrate

that a small clamped spherical segment may be weaker than a longer

clamped segment. The experimental collapse strength of the stiffened

shells was in no case as great as - ould be expected for a machined

unstiffened shell of the same weight. Since these were rather exploratory

tests, however, they do not demonstrate that effective stiffening systems

cannot be developed.
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INTRODUCTION

The problem of the collapse strength of spherical shells under uniform

pressure has received considerable attention in recent years. This

attention is due in part to the introduction of missiles and other space-

I
craft, and in part to the academic interest which the problem arouses.

Despite considerable effort by various investigators, there are no

adequate design procedures for spherical shells. 2 This is particularly

true for naval applications where relatively thick, deep spherical shells

are involved. The theoretical work carried out thus far is of little value

to the naval designer since the major effort has been directed toward the

elastic buckling of shallow thin caps. This orientation in theoretical

effort is due chiefly to the aeronautical application of this type of shell

structure. However, it often appears that work in this area is also pro-

moted by mathematical exploration of a problem somewhat more simple

than that of a deep or complete sphere. 2 Experimental investigations

have been considerably more limited than theoretical investigations. The

limited experimental studies have normally involved shells much thinner

than those of interest to the naval designer, and lack of sufficient know-

ledge of the initial imperfections present in the test specimens makes it

impossible to obtain useful design guidance from the test results.

During the past two years, the David Taylor Model Basin has been

actively engaged in developing the necessary background ior the design of

I References are listed on page 63-

SI- -6.
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spherical shells for use in underwater vehicles. Since recent emphasis

has been placed on deep-depth applications such as TRIESTE, the strength

of relatively thick as well as thin spherical shells is being investigated.

A limited amount of theoretical work is being conducted, but the program

is primarily experimental. Test specimens are being machined as well

as manufactured according to feasible large-scale fabrication procedures.

The effects of initial imperfections, residual stresses, boundary con-

ditions, stiffening systems, and penetrations on elastic and inelastic

behavior and collapse strength are being studied.

This report summarizes the test results of four series of small

machined spherical models. These tests, which were conducted under the

Fundamental Research Program (S-ROll 01 01, Task 04C01) and included

102 models, were designed to study the effect of unsupported shell length

on elastic and inelastic collapse strength of initially near-perfect spheri-

cal shells. The current heavy workload of high-priority projects pre-

clLdes conducting a complete analysis of the test results at this time.

However, publication of this preliminary analysis appears warranted in

view of the apparent lack of adequate experimental data in the literature

on the buckling strength of spherical shells. The general effects of

stiffening systems and initial departures f-om sphericity on collapse

strength are discussed on the basis of this preliminary analysis.

3
F,



HISTORICAL BACKGROUND

COMPLETE SPHERES

Timoshenko3 summarized the classical small-defection theory for the

elastic buckling of a complete sphere as first developed by Zoelly in 1915.

In this analysis it is assumed that buckling will occur at that pressure

which permits an equilibrium shape minutely removed from the perfectly

spherical deflected shape. The expression for this classical buckling

pressure p1 may be given as

p V
1)311 - 2z)

where E is Young's modulus,

h is the shell thickness,

R is the radius to the midsurface of the shell, and

" is Poisson's ratio.

Unfortunately, the very limited data available-prior to the current Model

Basin program do not support the linear theory; elastic-buckling loaads of

roughly one-fourth those predicted by Equation [I] were observed in

earlier tests recorded in the literature. 2 '4

Various investigators hnave attempted to explain this discrepancy by

introducing nonlinear shell equations. Von K5.rmain and Tsiens initially

introduced the nonlinear equations and the associated postbuckling con-

figurations. They determined the mii-imum load required to keep an

Selastic shell in the postbu-c.e position of finite detormation and offered

4 R
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this minimum value as the "lower" buckling load which could be expected

in an ordinary experiment. Friedrichs6 demonstrated that Von Kirman

and Tsien erred in placing certain restrictions on deformations. How-

ever, when Friedrichs removed the restrictions on deformations and

introduced a "boundary layer" concept, he was unable to obtaLin an equi-

librium load in the postbuckle shape. Following Friedrich's work, Tsien7

found that by introducing a new buckling concept, commonly referred to as

the "energy criterion of jump," he could calculate postbuckling equilibri-

um loads. * This energy criterion assumes that:

1. the energy level must be the same before and after buckling, and

2. the geometric restraints of the loading device must be satisfied.

Although the theoretical predictions of Tsien-are in fairly good agreement

with the early test results, there is widespread belief that his minimum

theoretical pressures have no true significance. For instance, Tsie."Is

theory predicts buckling pressure to be a function of the size of the test

chamber; collapse is pz-edicted to occur at a lower pressure in a large

test tank than in a small test tank, where the tank pressure falls off

appreciably during buckling. In practice, however, no differerice in buck-

ling pressure due to the size or energy of the system has been observed.

Recently, Thompson 9 has determined both theoretically and experi-

mentally that stable postbuckle states do exist for complete, "near-perfect"

* Unaware of Tsien's work due to the restricted exchange of scientific
information during World War II, Yoshimina and Uemura of the University
of Tokyo later developed a similar znergy criterion. 8
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spherical shells. His minimum pressure of the postbuckle path, obtained

theoretically by introducing a four-degree-of-freedom analysis, was

found to be 0.24 times the classical pressure. Furthermore, Thompson

also found that thid "minimum pressure" had no relationship with the

experimental buckling pressure.

The test specimens used in the earlier tests, 2 ' 4 the results of which

have been frequently compared to the theoretical buckling pressure for

initially perfect spheres, were formed from flat plates. Thus, although

little data are available, it can be assumed that these early specimens

had significant departures from sphericity, variations in thickness, and

residual stresses. Those specimens which were not complete spheres

also had adverse boundary conditions. Until very recently, 9 110 however,

no attempt has been made to theoretically evaluate these effects on the

collapse strength of deep or complete spher-s.

To clarify this rather large discrepancy between the classical buckling

pressure and the existing experimental data, the Model Basin recently

completed tests of two series of machined spherical shells1 1 ' 1 2 which

more closely fulfilled the assumptions of linear theory than accomplished

by the specimens tested in the earlier experiments. These tests demon-

strated the effects of initial departures from sphericity, together with the

normally less serious effects of variations in thickness, residual stresses,

a. 1 adverse boundary conditions. The collapse strength of these machined

shells was about two to four times greater than the collapse strength of the

6 4 -



shells formed from flat plate. 2, 4 By achieving a maximum 0.9 ratio of

experimental collapse pressure to the collapse pressure obtained from

claptical theory these tests lend considerable support to the validity of

the small-deflection theory for initially perfect complete spheres. Based

on these recent test results, an empirical design equation for machined

spheres was suggested which predicts collapse to occur at about 0.7 times

the classical pressure. For a Poisson's ratio of 0. 3, this empirical

equation for the elastic buckling pressure p 3 of near-perfect spheres may

be expressed as

p3 a 0.84 E (h) [a

where the use of the outer radius Ro is dictated by simple load equilibrium.

Since the recent tests show that the discrepancy between the early

experiments and the classical small-deflection theory can be attributed to

the failure of the specimens to fulfill the rigid theoretical assumptions, it

appears particularly worthwhile to investigate the effects of initial

departures from sphericity on the elastic buckling strength of complete

spheres. Until very recently, no theoretical or experimental work had

been done in this area. However, Thompson9 has recently conducted an

"telementary study" of the theoretical behavior of a complete sphere with

an initial departure from sphericity. Based on a middle surface imper-

fection of assumed shape and amplitude, he solved the nonlinear equations

7
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for the maximum buckling pressure. This type of theoretical approach

shows promise of producing the first valid theoretical analysis for

practical spheres and appears worthy of further investigation. Tests

have recently been conducted at the Model Basin to study the experimental

buckling pressure of machined shells with known local "flat spots. 1113
iI

The collapse pressures of these "flat spot" specimens were adequately

calculated using a semi-empirical equation developed on the basis of the

results presented in this report.

Bijlaard,14 Gerord,15 and Lunchick16 have developed solutions for

Cite inelastic buckling of complet,, spheres. Each followed the same basic

approach of applying a plasticity reduction factor to the classical linear

theory. Except for the use of different expressions for Poisson's ratio in

the plastic range, their solutions are identical. For a Poisson's ratio of

0.3 in the elastic region, Gerard's expression becomes

PC;G= 1. 154•( 13]

whe re E is the secant modulus,
s

Et is the tangent modulus, and

*p is Poissoais ratio in the plastic range.

Thus, if it is assumed that Poisson's ratio in the plastic range remains at

0.3, Gerard's expression becomes

p 4]
G E R)



Tests of machined aluminum spherical shells with ideal boundaries

which collapsed at stress levels above the elastic limit of the material are

also pre3ented in Reference 11. For each model tested, the plastic

buckling theories of References 14, 15, and 16 gave collapse pressures

higher than the corresponding experimental collapse prefssures. The

collapse strength of those models which failed at stress levels above the

proportional limit were accurately calculated, however, using an empiri-

cal formula based on the observed collapse strength of the elastic models

(as estimated by Equation [2]) and a plasticity reduction factor similar to

that developed in existing theory. This empirical formula for the in-

elastic collapse pressure of near-perfect spheres may be expressed as

PE = .4 sEt h[5

The secant and tangent modulus used in Equations [3], [4]1 and [5] are

derived from typical stress-strain curves of the material obtained from

tests of simple compression specimens. In Equations [3] and [4] it is

assumed, on the basis of thin shell theory, that the stress oI may be

calculated by

pR [6]
1 2h

In Equation (5], the average stress which satisfies equilibrium con-

ditions for all thicknesses, 0 avg' is used and may be calculated by

av9
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In many cases the presence of residual stresses lowers the collapse

strength of spherical shells. 17 This is particularly true for those shells

whose theoretical elastic collapse strength is only slightly greater than

their inelastic collapse strength. Specifically, residual stresses nohnally

cause a lowering of the proportional limit ai the material and an associ-

I ated falling off of the secant and tangent modulus. Formulas [3], [4],
and [5] show that by reducing the secant and tangent modulus the collapse

j strength is reduced for such shells. Although it can be stated quali-

tatively that residual stresses have a detrimental effect on many spheri-

cal shells, there is no theory which may be used to quantitatively evaluate

this effect. Furthermore, it is unlikely that a completely theoretical

approach to this problem will be satisfactory since the residual stresses

will probably often be present in some random, unpredictable pattern.

No significant work has been accomplished on the effects of pene-

trations and adverse boundary conditions on the collapse strength of

spherical shells. A method has been developed at the Model Basin for

designing penetrations and cylinder-hemisphere junctures for no rotation

and for a radial deflection equal to that of all other parts of the spherical
18

shell. Thus, the effects of penetrations and boundary conditions on

collapse pressure can be eliminated for ideal cases. For example, the

membrane boundary cylinders for hemispherical shells,1 1 ' 1 2 ,1 9 ,2 0 the

10
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reinforcement for axisymmetric penetrations in spherical shells,1 9 ' 2 0 and

the reinforcement for viewing ports in spherical hulls for oceanographic

research have successfully been designed in this manner.

Since stability considerations control the design of spherical shells

required to resist hydrostatic pressure on the convex side, it is worth

investigating the possibility of increasing the structural efficiency of

these shells by introducing stiffening systems. Unfortunately, no theory

is available for the buckling strength of stiffened spherical shells. How-

ever, considerable theoretical work has been done on the buckling of

clamped spherical segments, and this work is indirectly associated with

the local buckling of stiffened spherical shells. Experimental data on the

strength of stiffened spherical shells are lacking. Kloppel and Jungbluth 4

were unsuccessful in their attempts to improve structural efficiency by

stiffening spherical shells. However, the Model Basin has recently

conducted tests which indicate that some advantages may possibly be

gained by stiffening welded HY-80 steel spherical shells. 17

SPHERICAL SEGMENTS WITH CLAMPED BOUNDARIES

The perfect complete sphere deforms uniformly under pressure, but the

spherical segment with clanmped boundaries distorts axisymmetrically at

the initiation of the uniform pressure loading. Thus, nonlinear equations

must be introduced in order to determine the elastic behavior of clamped

spherical segments.

• ~~11...;



The nonlinear theory for the elastic buckling strength of near-perfect

shallow spherical segments with clamped edges under external hydro- t
static pressure was first investigated by Feodosiev22 in 1946. Since that

time, the problem has received considerable attention. The more recent

work of Budiansky,23 Weinitschke,24 and Thurston25 are particularly

noteworthy since they are in good agreement with each other throughout

the range of shallow spherical segments. * In contrast, the results of the

earlier studies based on nonlinear equations conducted by Feodosiev,2z

26 27,28,29Kaplan and Fung, and several other investigators are generally

in disagreement with each other.

Although Budiansky,23 Weinitschke,24 and Thurston2 5 have inde-

pendently developed solutions for the elastic axisymmetric buckling of

shallow spherical segments which agree well with each other, there is

generally very poor agreement between their theoretical predictions and

existing experiments.4,7,Z6,30 This disagreement is normally attributed

to the presence of initial imperfections in the test specimens and to the

influence of the nonsymmetric buckling mode, neither of which are con-

sidered in these theories. 2 3 ,2 4 ,2 5 The effect of initial imperfections in

the elastic axisymmetric buckling of shallow segments has been studied

by Chen31 and Budianskyo 23 Although both investigators have shown that

the presence of initial imperfections lowers the theoretical elastic

* A spherical segment is considered to be shallow when the ratio of its
height to its base radius is less than one-eighth. 2 6

-" 12



axisymmetric buckling pressure, the calculated reduction in buckling

pressure based on measured initial imperfection is not nearly enough to

produce even fair agreement with the experimental data. 23 Weinitschke 3 2

recently presented a theory on the nonsymmetric buckling of spherical

segments at an NASA Symposium on Instability of Shell Structures. At

this symposium, Fung and Thurston and also Budiansky and Huang indi-

cated that they were working on the same problem. Although

Weinitschke;s theory is in fairly good agreement with existing experi-

ments, it differs considerably from the independent results which the

other investigators are currently obtaining.

Very little work has been conducted on the inelastic strength of

clamped spherical segments. By use of the theories of limit analysis,

Hodge 3 3 derived the upper and lower bounds on the plastic collapse load

of a spherical segment. Roth 3 4 studied the buckling of a spherical

* segment of an elastic perfectly plastic material. The inelastic buckling

strength of a clamped spherical segment of strain-hardening material has

not been studied. No experimental data on the inelastic buckling strength

of clamped spherical segments can be found in the literature.

DESCRIPTION OF MODELS

The four series of models were: designed to study the effect of

unsupported shell length on collapse strength and consisted of the follow-

ing:

1. Series S consisted of four models representing complete spheres.

13



2. Series SS consisted of 73 clamped spherical segment models with

included angles ranging from 5 to 120 deg.

3. Series DSS consisted of eight 300-deg spherical segments with

clamped edges.

4. Series SSS consisted of 17 stiffened hemispherical shells.

Nine models in Series SSS had circumferential stiffeners only, four had

meridional stiffeners only, and four had both circumferential and meridi-

onal stiffeners.

Each series was designed to study both the elastic and inelastic buck-

ling strength of spherical shells. Thus, the ratios of shell thickness to

radius were selected to study relatively stable as well as unstable con-

figurations. Unfortunately, the thinnest shells in Series S and Series DSS

possessed ratios of shell thickness to radius which were slightly too great

to ensure completely elastic failures.

All models in each series were machined from 7075-T6 aluminum bar

stock with a nominal yield strength of 80,000 psi. Young's modulus E for

the material, as determined by optical strain-gage measurements, was

10.8 x 106 psi. A Poisson's ratio P of 0.3 in the elastic range was

assumed. Tables 1-5 give the model dimensions fo" each series, and
I -

Figure 1 shows representative ratios of [E Et] to E as a function of uni-

axial compressive stress for the material used in each model. The thick-

ness used in all strength calculations is listed as measured wall thickness

in these tables. Variations in measured thickness are also shown.

14
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Figuire 1 Representative Material Characteristics

SERIES S

Series S consisted of fouir complete machined spheres, each having a

60-deg "hatch opening" requiired to permit machining of the inside contour.

The "hatch covers," which were inserted into the openirg, and the area in

the shells adjacent to the opening were machined 1O..percent thicker

15
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than the remaining portion of the spheres in an effort to minimize boundary

effects while discouraging failure in the cover itself (see Table 1).

Each of the four complete sphere models was machined in an identical

manner. After roughing operations, the final contours of both the inside

and outside of the main body of the sphere were obtained by proflinig.

The hatch covers were obtained by sawcutting disks from profiled hemi-

spherical shells of the desired thickness, glueing the disks to a mating

adaptor pla, ed in a lathe, and machining the edges of the disk to match

the opening in the sphere.

The wall thickness of each model was measured at numerous locations

by means of a Vidigage. Unfortunately, the initial departures from sphe-

ricity were not determined for the Series S models.

SERIES SS

Series SS consisted of 73 machined spherical segment models with

clamped edges; see Table 2. These ,models had included angles ranging

from 5 to 120 deg. The interior contours of Models SS-l through SS-56

were machined by use of form tools. The interior contours of Models

SS-57 through 73 were generated after erratic results were obtained from

the very thin models machined by form tools. In generating the irterior

contour of these models (which had very -low ratios of wall thickness to

radius), a tool specially designed to accurately generate inside spherical

surfaces was used. The outside spherical contour of each model was

* This same tool was used successfully (see Reference 12) to attain near-
perfect sphericity in hemispherical shells.

16
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TABLE 1

Dimensions and Experimental Collapse Pressures, Series S Models

40.000

5-2 0121 0141 8500

S-I 0.9 0.0048 0.09 14,300 A

17
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obtained by supporting the inside contour by a mating mandrel and by

generating the outside surface using a lathe with a ball-turning attach-

ment. The edge of the spherical portion of each model was supported by

a very heavy ring. The spherical shell and supporting ring of each model

were machined as a unit.

Because each model was machined, a minimum of initial imperfections

was anticipated. The wall thickness of each model was measured at

numerous locations using a small support-ball and a dial gage calibrated

in 0. 00002 in. The total variation in measured wall thickness was nor-

mally less than I percent of the shell thickness. Deviations from perfect

sphericity were not measured for Models SS-l through SS-56. However,

the variation in local inside radii was measured for the generated shells

of Models SS-57 through SS-73 by pivoting a dial gage clamped to the

special tool for generating inside spherical surfaces. These measure-

ments indicated that the -ariation in .ocal inside radii for each of these

17 shells after final machining was less than 0. 0002 in. and normally less

than 0. 0001 in.

SERIES DSS

Series DSS consisted of eight machined 300-deg spherical shell models

with clamped edges. Models DSS-l through DSS-5 were machined by

profiling both the interior and exter'or spherical surfaces. The interior

contoura of Models DSS-6 through DSS-8 were generated using the new,

specially designed tool which was also used for Models SS-57 through

SS-73. The exterior contours of Models DSS-6 through DSS-8 were

generated using a lathe with a ball-turning attachment. A heavy end ring
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was machined integral with each 300-deg shell segment. In addition, a

solid plug was placed inside the ring to provide additional rigidity at the

edge of the spherical segments. These plugs had a nominal Class 4 fit

with the mating end rings (see Table 3).

The shell thickness of Models DSS-l through DSS-5 was measdred by

means of a Vidigage. The shell thickness of Models DSS-6 through DSS-8

was measured by using a small support-ball and a dial gage. No

measurements of i:nitial departures from sphericity were made on the

Series DSS models.

SERIES SSS

Series SSS (see Tables 4 and 5) consisted of 17 externally stiffened

machined hemispheres designed for an exploratory study of the effect of

stiffening systems on the collapse strength of relatively unstable spherical

shells. Models SSS-l through SSS-9 had circumferential stiffeners only,

5
Models SSS-10 through SSS- 13 had meridional stiffeners only, and Models

SSS-14 through SSS-17 had both circumferential and meridional stiffeners

covering a portion of the hemispheres considered adequate to represent a

complete sphere. The unstiffened portions of the hemispherical shells of

Models SSS-14 through SSS-17 were of sufficient thickness to force failure

to occur in the thinner region reinforced by the stiffeners (see Table 5).

The interior contours of each model were machined by use of a form

tool. The exterior contours of Models SSS-I through SSS-9 were

machined by use of a lathe with a ball-turning attachment. The exterior

20



TABLE 3

Dimensions and Experimental Collapse Pressures, Series DSS Models

TAIIULATION)

035K I

Measured Measured Experimental Collapse Pres-iure, Test Setup
MODEL Wall Thickness Variation Pexp (e iue2

hin. in , (iee Fiuri2

+0.1003
DSS-1 0.160 -O.OOZ 11,100 A
DSS-Z 1 0.165 *0.005 111.375 A

+0.0035
DSS-3 0.0705 -0.0015 4,720 A

+0. 005
DSS-4 0.125 -0.002 8.400 A

+0.00HI5
DSS-S 0. Q505 -0.0005 Z.800 A

+0.0004
DSS-6 0.0471 -0.0012 2,925 A

+0.0006
DSS-7 0. 0224 -0.0006 1,200 A

40.0007
DSS-8 0.02Z48 -0.0010 1,290 A
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7i

Dimensions and Experimental Collapse Pressures, Series SSS
Models SSS-14 and SSS-15

Sm

00385 IN

*1 -2 A IN

2 450 I1

Measured Thickness, in.
a ELEMENT MODEL SSS-14* MODEL SSS-15*

Maximum Minimum Maximum Minimum

A& 0.0093 0.0083 0.0096 0.0092
A 0.0082 0.0079 0.0083 0. C078
B 0.0081 0.0075 C.0086 0.JD08Z

` C 0. 0079 0.0076 0.0082 0.0076
0D 0.0070 0.0066 0. 0080 0.0077

E 0.0084 0.0070 0.0078 0.0076
+ F 0.0075 0.0070 0.0080 0.0074

G ".0082 0.0073 0.0081 0.0076
H 0.0079 0.0077 0.0084 0.0076
1 0.0086 0.0084 0.Coe5 Q. 0079
. 0.008S 0.0o86 0.0085 0.0080

K 0.0088 0.0586 ,3.0084 0.0079
L 0.0090 0.0089 0.0083 0.0079

M 0.0088 0.0085 0.0083 0.0079
N 0.0090 0.0089 0.0085 0.0000
0 0.0091 0.0088 0.0B 08 U. 0077
P 0.0091 0.00¶9 0.00S 0.0079
Q C 0.0088 0. 0086 0.0081 0.0077

"" Rt 0.0086 0.0084 0.00o8 0.0079

S 0.0085 0.0083 0.0084 0.0079
T 0.0087 0.0086 0.0087 0.0080
U ). r085 0.0084 O. 0085 0.0079
V C'. L088 0.0087 0.0086 0.00az
w 4 o. 0.0.54 0.0084 0.0082 0.0079

'-0.0087 0.0004 0.0075
XX 114 :.C1o o.*2 O .l,0

Experimental codlapse pressures were 1325 psi for #Aodel SSS-14
and 1345 ps. for Model SSS-ti. The models buckled locally at
lower pressures. Test Setup B was employed (see Figure 2).

S23

-- -------------



000000

C! v ~ in 0n inththLn

c0oo000
41 0000000

-- 7

ý I ý 00,0!0000

I, .% r 4

C,~~~W in0 l 0ooto .1L
:3 0 0 -ID 0Dt-t

z

24



Z,

0ý -r *1;C 0000

0000000000000000000000000000000000000000000c

I-C oo, oooooooooooooorOOOOOOOOOOOOOCOOo>0oc

(nc '0 'oc ,

E' oa n V- -o- -u z r oc nw oL -ot n N0r sc - oc nc00 r 1 0 -P-r --10 1 a 1 0 0 a 0 10 a 10 a t t , -c-c --r-c ( 0 , -r-r r --rI
c '--'Cý 0 0 0 0 0 00' 0'-0o o o

O.E ( ~ aoo aaooo ooooa.-o



13t.

N co t~ .a, t - 0'- aN NO 0 0at- c- 01, o af'o t- 0 C 0 0 0 a r- r-0Uor W0 wOw0N N-'.0 v '0a

N0 00 o,,U - .1 U I ~ ~0 0Itlt a0 .0U U, .

OC c 00 0c -300000000oo~O O 000 0b O0000000000I000, s 0 010000 0 0 0

OC; cc c;c ;0No'~o O ~ occc

LA M M' ese N 0JS "'S MvS N C'00 0 0 a 0 aN N N N N -01 ON w V . O ON -W C .0 N V V' -0

(n r tI US u) t, uN kntnL u nu~ in5 th U n in a nt ni nvt in, oS o, o~ of Uo oC in -o d0000V ' Ln tn ý o 1 0 i 0 .a 0 V.. V00

'Q' 0000000000 O 0 C 0OC 0 0 OOOO 'O c o00C0 coo0 ,000 0 0 0 0 c o 'c'

aoc . . . . . .

tS N o' v '1 - U'S f- 10 M~ r- 10 '.0 'C 0 U'S VS 10 v 0 'v9 N- 0" NO ,0a. a cc a 00 .-4 4 4 4r

D 10Ot r 0 0 I aI 0 %0 a 0IOO0 10 0 0 1 0 O -t- r 0 t-r-f-OO 0 0 0O0 O0 t0.. r-r

0o 0 0 O 0 0 j O 0 0 0 O 0 O O O O O O O O 00

D < "' 'ooýo* 1O00. OO.O0.OO.O0.O OO.0O.OO. .o 0 0 0 * c ; ; c ;C

OO 0 0 0 0 0 0 0 00 0 0 0 ) I 0 0 0 -00 0 00 00 00 0000000 000 0 411 cý1 1ý

d;. -. 0

III Ct- C1 01

'L L I

a~u)E.3I



contours of Models SSS-10 through SSS-17 were obtained by first turning

the contour to the outside radius of the stiffeners and the thick-walled

portions of the shell. Then the material between stiffeners was removed

individually by indeAing the model in relation to an electrode in an electric

discharge machine. Thus, the stiffeners and shell. formed an integral

unit.

The wall thickness of each model was measured by using a small ball-

support and a diaL gage. The initial departures from sphericity were not

measured in the Series SSS models.

TEST PROCEDURE

Each model was tested under external hydrostatic pressure. Sche-

matic sketches of the pressure tanks and test setups are shown in Figure

2. Pressure was applied in increments and each new pressure level was

held at least I min. The final pressure increment was normally less

than 2 percent of the maximum pressure. Every effort was made to mini-

mize any pressure surge when applying load.

SERIES S

Models S-1, S-Z, S-3, and S-4 were tested in a 5-in.-diameter tank

shown in Test Setup A of Figure 2. No strain data or change in internal

volume measurements were recorded dc-ing the tests.

SERIES SS

Models SS-I through SS-40 and Model SS-42 were tested in a 2-in. -

diameter tank sl-own in Test Setup B of Figure 2. The models were

Z5

S77 Z
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Figure 2a - Test Setup A Figure 2b -Test Setup B

DIAL GAGE

Fe-

Figure Zc -Test Setup C Figure 2d -Test Setup D

Figure 2 -Sketches of Models in Pressure Tanks
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vented to the atmosphere. No strain d or change in internal volume

measurements were recorded during the teats. Models SS-43 through

SS-46 and Models SS-48 through SS-56 were tested in a short, 2-in. -

diameter tank shown in Test Setup C of Figure 2. No strain data were

recorded during the tests. However, the center deflection of these models

resulting from the applied hydrostatic load was recorded. Model SS-41,

Model SS-47, and Models SS-57 through SS-73 were also tested in the

short, 2-in. -diameter tank. However, the change in internal volume

resulting from the applied load was recorded for these models rather than

the center deflection. The test setup is shown in Figure 2d.

"SERIES DSS

Models DSS-I through DSS-8 were tested in the 5-in. -diameter tank

shown in Test Setup A of Figure 2. No change in internal volume

measurements was recorded. However, circumferential and meridional

strains in Models DSS-4, DSS-5, and DSS-7 were recorded using foil-

resistance strain gages. Gage locations are shown in Figure 3..

SERIES SSS

Models SSS-1 through SSS-17 were tested in the 2-in. -diameter tank

shown in Test Setup B of Figure 2. No strain data or internal volume

measurements were recorded during the tests. However, visual in-

spection of the inside contour of the model was conducted at all pressure

increments prior to collapse for Models SSS-14 through SSS-17.
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o05

206.207 216.217
-X 208.,209 21.19oi X X 11.11710 107 6 X 210.211 220.2216 118*119

108,109 20IZ,1l21

Figure 3 - Strain-Gage Locations for Series DSS,
Models DSS-4, DSS-5, and DSS-7

TEST RESULTS

Models SS-43 through SS-56 were not collapsed or ruptured under

external pressure. The collapse pressures for all other models are

listed in T.bles 1-5. Collapse pressure, defined as the maximum ex-

ternal pressure withstood by the respective model, was accompanied in

each case by a large dropofi in tank pressure. Many of the models

ruptured during collapse. Photographs of representative models after

collapse are shown in Figure 4.

S!RIES S

Each model in Series S ruptured during collapse (see Figure 4a).

Failure oi each model apparently initiated in the main body of the sphere.

28
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Figure 4 - Samples of Collapsed Models

Figure 4a - Series S and Series DSS

Figure 4b -Series SS
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Figure 4c - Series SSS

Due to the relatively large size of the test tank, no falloff in tank pressure

occurred prior to collapse of Series S Models.

S-, S-RIES SS

Models SS-l through SS-42 and Models SS-57 through SS-73 each col-

lapsed in a sudden, unmistakable manner. A slight falloff in tank pressure

was bserved prior to collapse of several of the more stable models.

When this falloff in pressure was observed, the tank pressure was promptly

raiseu to the proper levw 1. Some of the models collapsed in a non-

symmetric mode, and others apparently collapsed in a 3ymmetric mode.

The recorded changes in internal volume versus pressure for Model

SS-41, Models SS-57 through SS-66, and Models SS-68 through SS-73 are

presented in Figure 5.

Models SS-43 through SS-56 were not collapsed nor did they rupture

under external pressure. Each model was subjected to pressures which

caused the center deflection to be greater than the initial rise of the
4 -V
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Figure 5 -Pressure versus Relative Change in Internal Volume
for Shallow Models of Series SS

MODEL. SS-4? ____

2400-

2200
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MODEL SS-62

400 A 0. -"ZO

200

RELATIVE CHAN"E (I INTENWAL VOLUME

Figure -5a
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MODEL. SS-44

300 MODEL SS-43

MOEL 70

250 1DLS-2

SS_ MODEL SS-44

200

SS-4

£50

100

50 _

RELA f1VE CHANGE IN 21*TERNAL VOLUME

Figure - 5b

segment without buckling. The measuired center deflection versus ex-

ternal pressure for each of these models except SS-47 is presented in

Figure 6. The measured change in internal volume versus external pres-

sure for Model SS-47 is shown in Figure 5.

SERIES DSS

Models DSS-l through DSS-8 each ruptured during collapse (see

Figure 4a). Failure of Models DSS-7 and DSS-8 initiated in the shell at

R3x



Figure 6 -Pressure versus Center Deflection for Shallow Models""
of Series SS
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the juncture with the heavy end ring. The other models failed in the shell . ,*

in areas away from the end ring. Due to the relative size of the test tank,

no falloff in tank pressure was observed prior to collapse of Series DSS

models.

Measured elastic strain sensitivities, the initial slope of the pressure-

strain plot, are presented for Models DSS-4, DSS-5, and DSS-7 in Figure

7. Typical plots of pressure versus strain are shown in Figure 8.

SERIES SSS

Models SSS-1 through SSS-13 failed in a very sudden manner. No drop

in pressure prior to collapse was observed. Unfortunately, no visual

inspection of these mo•-dels was made during the tests.

The collapse pressures of Models SSS-14 through SSS-17, which are

listed in Table 5, represent the pressures at which overall collapse oc-

curred. However, visual inspection of the interior contour of these

models indicated that excessive local deformation of the shell between

stiffeners occurred during the test of each model. This excessive defor-

mation was first observed at 1100, 1225, 775, and 500 psi for Models

SSS-14, SSS-15, SSS-16, and SSS-17, respectively. Photographs of the

progressive "buckling" of Model SSS-16 are presented in Figure 9.

The pressure load was applied to Model SSS-17 in four cycles. The

first cycle reached a maximum pressure of 525 psi, the second cycle,

575 psi; the third cycle, 625 psi; and the final cycle reached the collapse

pressure of 870 psi. When the pressu'e was removed at the end of the

35
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Figure 7 - Measured Strain Sensitivities for Series DSS,
Models DSS-4, DSS-5, and DSS-7

first cycle, no permanent deformation was observed. Thus, the lobe

which appeared at 500 psi in the thinnest shell segment of Model SSS-17

was essentially elastic at 525 psi. 'After the second cycle, some permna-

nent deformation was observed at the location of the initial lobe. At the

maximum pressure of the third cycle, a second lobe was observed. When

the pressure was removed at the end of the third cycle, permanent defor-

mation was observed at the location of both of the first two lobes. During

36
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Outside View of Inside View of

Model Before Test Model in Tank; p = 0

p = 950 psi p - 1000 psi

p = 1040 psi p 1075 psi

p = 1118 psi Model After Collapse;

Pexp = 1125

Figure 9 - Progressive Buckling of Model SSS-16
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the final cycle, the number of lobes increased with increasing pressure

until, immediately prior to collapse, nearly each segment of shell between

stiffeners had formed an inward lobe.

DISCUSSION

SERIES S

Failure of each of the four Series S models occurred in regions

removed frox,. the hatch (see Figure 4a). It appears that increasing the

thickness of the hatch cover and adjacent area by 10 percent eliminated

failure of this region. In addition, the photographs of the collapsed

models indicate that the failure occurred in regions unaffected by the

hatch. This is particularly true for Models S-1 and S-3. Thus, the

collapse strengths of the Series S models represent the collapse strengths

of complete machined spheres. U'rortunatel y, no strain data were re-

corded during the tests so no conclusions can be made regarding the

elastic behavior in way of the hatches.

TABLE 6

Summary of Geometric Parameters and Collapst- Pressures
for Series S Models

MODEL e PexP avg P PEP3 Pexp
deg psi psi psi psi PE PE

S-1 360 14,300 84,300 70,260 14,150 5.05 1.01

S-2 360 8,500 76,500 ' 29,530 8,720 3.40 0.98
I.

S-3 360 3,000 6Z,300 5,355 3,400 1.58 0.88

S-4 360 1,500 58.300 1,495 1,465 1.G0 1. 0z

41 5
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Table 6 presents the average stresses of the Series S model at col-

lapse calculated using Equation [7]. Each model collapsed at stress

| 
IF

levels equal to or greater than the proportional limit of the material.

Thus, each model collapsed by inelastic buckling.

Since the collapse of each model in Series S represented the inelastic

buckling of a complete machined sphere, the empirical Eq,,ation [5] is

considered applicable in calculating their collapse strength. It may be

repeated that Equation [5] was suggested for use in calculating the ine-

lastic as well as elastic buckling strength of machined deep spherical

shells with ideal boundaries. The experimental collapse pressures of

these models are compared in Table 6 and Figure 10 with the pressures

calculated by using Equation [5]. Table 6 also presents the empirical

elastic buckling pressure calc'lated by using Equ2t--ti [2] a~nd indicates

the relative stability of each model by presenting the ratio of the -- "npiri-

cal elastic buckling pressure to the empirical inelastic buckling pressure.

In addition, Figuze 10 compares these present results with the earlier

results of machined hemispheres with ideal boundaries. ll,lZ The ab-

scissa in Figure 10 is the ratio of the empirical buckling pressure pE to

PI, the classical small-deflection elastic buckling pressure according to

Equation [1] for a 0. 3; and the ordinate is the ratio of the experimental

buckling pressure pexp to pl.

The agreement between the experimental results and the calculated

values obtained from Equation [5] is excellent for Models S-l, S-2, and
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Figure 10 - Experimental Buckling Data for Machined Deep Spherical
Shells with Ideal Boundaries
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S-4. However, agreement between experimental and calculated pressures

for Model S-3 was only fair; the experimental collapse pressure was about

12 percent below the calculated collapse pressure. Although this dis-

crepancy may not appear to be very large, it is considerably greater than

expected on the basis of earlier tests of machined shells11 shown in

Figure 10. There is no obvious explanation for this discrepancy; initial

departures from sphericity may have lowered the experimental collapse

pressure, or a local reduction in the strength may have been present in

the 7075-T6 aluminum bar stock.

Based on the results presented in Figure 10. Equation [5] adequately

predicts the buckling strength of deep spherical shells with ideal bounda-

ries machined to the accuracy represented by these models and the models

presented in Reference 11. Unfortunately, the initial departure from

sphericity was not measured for any of these shells. A quantitative

picture of the departures from sphericity can be obtained, however, by

studying the measured variations in thickness. Since none of the models

were supported on the inside while final machining the outside contour, it

seems unlikely that the initial departures from sphericity are any greater

than the measured variations in wall thickness. Thus it appears that the

spherical shells represented in Figure 10 had total initial departures from

sphericity which were, in general, less than5 percent of the shell thicknefs..

* The initial departures from sphericity were not measured for the
Series S models but are assumed to be small since the shells were ma-
chined.

44



For design purposes, Equation [5] may be expected to adequately pre-

dict both the elastic and inelastic collapse strength of deep spherical

shells with ideal boundaries or "complete spherical shells" whose

contours have been accurately machined to ensure local variations in

radii of less than 2 1/2 percent of the shell thickness 1 3 over a critical

length. Accu% ately machined spherical shells may buckle elastically at

pressures approaching 43 percent greater than the pressures obtained

from Equation [5]. 12 For design purposes, however, it appears unreal-

12istic to rely on this additional strength. This is caused to a great

extent by the inability to measure the contours to the required degree of

accuracy since most practical shells which fail elastically have low ratios

of thickness to radius. Accurately machined shells which collapse in the

inelastic region may also fail at pressures higher than tho3e calculated by

using Equation [5]. As in the case of the shells which fail elastically,

however, it does not appear practical to rely on any strength in addition to

that obtained from Equation [5].

1U appreciable initial departures from sphericity are present, both the

elastic and inelastic collapse strength of deep spherical shells with ideal

boundaries will be lower than the pressure calculated by using Equation

[5]. For design purposes, Equation [5] represents an upper bound for

experimental collapse strength. If the initial departure from sphericity

over a critical length is greater than about 2 1/2 percent of the shell

thickness, the collapse strength will most likely be less than that

45

- !



calculated using Equation [5]. A semi-empirical design approach for

shells with initial departures in aphericity is presented in Reference 13.

The effects of variations in thickness, adverse boundary conditions and

penetrations, and residual stresses are not considered in the development I
of Eqaation r5'. Therefore, caution must be exercised when using this

design equation to ensure that none of these effects are present in the

structure.

SERIES SS

The collapse pressures of those shallow spherical segment models

which failed elastically (Models SS-25, SS-26, SS-33 through SS-36, and

SS-57 through SS-73) are compared in Figure 11 with test results recorded

in the literature 4 ,7'2 6 ,30 and with nonlinear axlsymmetric theory. 23,24,25

The ordinate is the ratio of the experimental collapse pressure Pexp to P3 '

the empirical elastic buckling pressure for machined deep spherical shells

with membrane boundaries. The abscissa is the nondimensional geo-

metric parameter 8* defined as

[3La 0.91 La for s = 0.3 [8]
V Rh "Rh

where L is the unsupported arc length of spherical shell.
a

Figure 11 also shows the results for four thin hemispherical shells

with rigid boundaries35 recently tested at the Model Basin. A summary

* it can be shown that 0 is identical to the parameter j, used by
Weizi•itschke24 and others.
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of geometric parameters and collapse pressures for each of the Series SS

models is given in Table 7.

TABLE 7

Summary of Geometric Parameters and Collapse Pressures
for Series SS Models

4y3 Pex

MODEL 0 Pexp avg P3 PE P eXP
deg psi psi psi psi PE PE

SS-1 120 6.21 14,175 82,605 73,200 14,320 5.11 0.99
SS-2 120 6.22 14,250 83,310 72,710 14,050 5.18 1.01
SS-3 120 8.51 8,500 74,815 31,290 8,950 3.50 0.95
SS-4 120 7.84 8,175 73,290 29,910 8,710 3.43 0.94
SS-5 120 12.19 2,900 60,790 5,290 3,370 1.56 0.86
SS-6 120 12.26 2,950 62,430 5,180 3,350 1.55 0.88
SS-7 120 17.06 1,100 44,640 1,395 1,395 1.00 0.79
SS-8 120 17.15 1,090 44,665 1,365 1,365 1.00 0.80
SS-9 60 3.09 14,375 83,130 73,380 14,850 5.00 0.97
SS-10 60 3.11 14,225 82,975 73,040 14,360 5.08 0.99
SS-11 60 j 3.90 8,200 72,695 30,600 8,920 3.43 0.92
SS-12 60 3.89 8,100 71,685 30,700 8,900 3.45 0.91
SS-13 60 6.02 2,925 59,885 5,540 3,480 1.59 0.84
SS-14 60 6.05 2,875 59,415 5,440 3,420 1.59 0.84
SS-15 f 60 8.54 1,070 43,420 1,390 1,390 1.00 0.77

S-168.54 1,080 43,8Z5 1,390 1,390 1.00 0.78
-I'S±i 4 5 2.3Z 18,400 106,410 74,460 13,800 5.40 1.33

ýSS-18 45 . 2.33 18,200 106,055 73,200 13,620 5.37 1.34
SS-19 45 2.90 8,700 76,165 31,420 8,750 3.59 0.99
SS-20 45 2.91 8,320 73,365 30,940 8,690 3.54 0.96
SS-21 45 4.50 2,480 50,305 5,650 3,450 1.65 0.72
SS-22 45 4.52 2,545 51,860 5,600 3,390 1.65 0.75
SS-23 45 6.32 1,060 42,005 1,460 1,460 1.00 0.73
SS-24 45 6.35 1,055 42,200 1,435 1,435 1.00 0.74
ss-25 45 8.56 355 25,565 439 439 1.00 0.81
SS-26 45 9.04 290 23,315 352 352 1.00 0.82
SS-27 30 1.86 18,550 1150,090 36,960 9,700 3.84 1.91
SS-28 30 1.86 18,375 149,290 36,650 9,610 3.81 1.91

SS-29 30 1.94 16,320 143,500 31,170 8,790 3.54 1.86
SS-30 30 1.94 15,930 140,850 30,760 8,700 3.54 1.83
SS-31 30 3.03 2,725 156,450 5,410 3,410 1.59 0.80
SS-32 30 3.03 2,700 55,800 5,440 3,400 1.60 0.73

SS-33 30 4.191 735 28,720 1,500 1,500 1.00
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TABLE 7 (Cont'd)

MODEL Pexp 'avg P3 PE P3 Pexp
degpsi P psi psi PE PE

SS-34 30 4.25 685 27,530 1,420 1,420 1.00 0.48
SS-35 30 6.15 270 22,585 326 326 1.00 0.83
SS-36 30 6.28 195 17,180 294 294 1.00 '0.66
SS-37 20 1.60 14,375 189,860 13,520 5,880 2.30 !2,45
SS-38 20 1.61 14,250 L89,340 13,360 5,830 2.29 !2.45
SS-39 20 2.13 4,350 99,835 4,390 3,100 1.42 1.40
SS-40 20 2.16 4,150 97,655 4,180 3,010 1.39 J1.38
SS-41 20 2.97 945 41,640 1,180 1,180 1.00 :0.80
SS-42 20 2.93 950 41,020 1,230 1,230 1.00 i0.77
SS-43 10 1.30 - - 2,000 1,890 1.06 -
SS-44 10 1.31 - - 1,955 1,845 1.06 -
SS-45 10 1.49 - - 1,175 1,175 1.00 -
SS-46 10 1.48 - - 1,190 1,190 1.00 -
SS-47 10 1.64 - - 799 799 1.00 -

SS-48 10 1.66 - - 754 754 1.00 -

SS-49 5 1.37 - - 164 164 1.00 -

SS-50 5 1.37 - - 165 165 1.00 -

SS-51 5 1.54 - - 103 103 1.00 -

SS-52 5 1.54 - - 103 103 1.00 -

SS-53 5 1.79 - - 56.4 56.4 1.00 -

SS-54 5 1.84 f_-_ - 49.9 49.9 ! 00 -

SS-55 5 2.61 - - 17.1 17.1 1.00 -

SS-56 5 2.61 - - 17.1 17.1 1.00 t -

SS-57 16.5 2.28 2,050 78,000 1,540 1,540 1.00 1.33
SS-58 18.5 2.73 1,080 47,000 1,175 1,175 1.00 0.92
SS-59 20.0 3.19 690 34,700 87B 878 1.00 0.79
SS-60 22.8 3.64 605 30,200 894 894 1.00 0.68

ISS-61 25.7 4.10 580 29,100 883 883 1.00 0.66
SS-62 25.7 4.10 570 28,500 889 889 1.00 0.64
SS-63 23.4 4.45 290 21,700 398 398 1.00 0.73
SS-64 25.7 5.01 312 23,400 398 398 1.00 0.79
SS-65 24.3 5.46 193 19,700 215 215 1.00 0.89

SS-66 32.4 7.28 225 23,000 215 215 1.00 1.05
SS-67 32.4 7.51 218 23,300 199 199 1.00 1.10
SS-68 28.1 6.30 226 22,700 225 225 1.00 1.00
SS-69 38.1, 8.67 213 21,400 207 207 1.00 1.03
SS-70 46 10.0 257 124,150 257 257 1.00 1.00
SS-71 54 12.1 249 1,21,800 247 247 1.00 1.08
SS-72 60 13.5 246 121,500 247 247 1.00 1.00
§S-73_ 35.2 7.61 245 Z24 , 6 0 0 243 243 1.00 1.00
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The Interior ccntours of all the machined models represented in

Figurj 11, except Models SS-57 through SS-73, were obtained by use of

the form LooI. Erratic results were obtained from each of the models

obtained by forin t6ol except for those models recorded in Reference 35.

These erratic results were undoubtedly caused by initial departures from

sphericity. Unfortunately, no measurements were made of the initial

contours. It appears that the inside contours of these models, which were

very thin, were not perfectly spherical. Under the pressure of the tool,

however, these interior contours conformed to the spherical surface of the

support mandrel while the exterior contours were fi-na, machined. When

the machining operations were completed and the model was removed

from the support mandrel, these models apparently assumed the shape of

the inside contours. Thus, a uniform wall thickness was obtained although

initial departures from sphericity were present in the shell after ma-

chining.

Like previous experiments recorded in the literature, the present

tests of models machined by use of a form tool showed a complete lack of

repeatability. However, the present results of models machined by

generating both inside and outside contours followed a very definite

pattern (see Figure 11). Models SS-57 through SS-73 each had near-

perfect sphericity; the variation in measured local inside radii for each

of these models was less than 0. 0002 in. and normally less than 0.0001 in.

Therefore, as in the case of the machined deep spherical shells with
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favorable boundaries, these results demonstrate the detrimental effects

of initial departure from sphericity on collapse strength. These results

also demonstrate that a small clamped segment can be weaker than a

larger clamped segment. Although this phenomenon has been implied

by existing theoretical studies, it found no support in the earlier experi-

ments and several investigators have stated that it is physically not

feasible. 2 9 ' 3 6 An obvious implication of these results is that stiffening

systems may weaken rather than strengthen a spherical shell if placed at

critical spacings.

The empirical curve arbitrarily drawn through the experimental points

in Figure 11 has the same general shape as the theoretical curve of

Budiansky, 23 Weinitschke,24 and ThurstonZ5 for short segments associ-

ated with values of 8 less than about 5.5. However, as the shells become

longer or deeper, the empirical curve departs from the theoretical curve.

Since the theoretical curve represents collapse pressures in the sym-

metric mode, it is reasonable to assume that the mode of collapse

becomes nonsymmetric in this region. Actually, the deformed surfaces

of the three longest generated segments after collapse were nonsym-

metric in nature, whereas the others were symmetric. This does not

necessarily mean that all of the 14 shallower segments failed in the

symmetric mode. Previous investigators 4 ' 3 0 have found that failures

which appear to be symmetric after collapse may have initiated in the

nonsymmetric mode.
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Weinitschke recently developed a theory for the nonsymmetric buckling

of shallow spherical shells. Although his theory is in fair agreement

with early experiments, it completely disagrees with the present results.

Assuming that the same degree of accuracy was achieved in all of the 17

generated models, it appears that the correct theoretical nonsymmetric

buckling pressure for clamped segments would be critical for values of 8

greater than about 5.5 and would be equal to roughly 80 to 90 percent of

the classical buckling pressure for complete spheres.*

Models SS-43 through SS-56 did not buckle nor did they collapse or

rupture under external pressure (see Figures 5 and 6). Each of these

models had thicknes s-to-radius ratios which would ensure elastic buckling

if in the form of complete spheres. However, each shell was extremely

shallow with included angles of 5 to 10 deg whereas the smallest included

angle for the shells that did buckle was 16 1/2 deg. Most of these shells

also had extremely small values of 0. Either of these factors might pre-

clude buckling. The preliminary analysis on these models however, is

* not sufficient to reach any definite conclusions.

The test results of those models which failed at stress levels above the

proportional limit of the material s are presented in Figure 12 as a

function of the geometric parameter 9. The results are quite consistent

when plotted in contour of ratios of P3 to PE" For those deep segments

* In discussing Weinitschke's paper 3 2 at the recent NASA Symposium on
Instability of Shell Structures, Budiansky indicated that his early theo-
retical results follow this same general pattern.
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which had ratios of P 3 to PEof 1 but had membrane stresses of collapse

(a avg) of about 70 percent of the proportional limit, the observed col-

lapse strength was about 20 percent less than would be expected for a

near-perfect complete sphere or a deep machined sphere with ideal

boundaries. As the ratio of P 3 to pE increased (that is, as the shell

bcame more stable), the effects of clamping the edges diminished for all

except the very shallow, or short, shells.

Regardless of the ratio of p3 to p_, the buckling strength of all

segments increased rapidly for descending values of 9 below abuut 2.2 to

2.5. Therefore, it is apparent that stiffeners must be placed at relatively

close intervals in order to realize an increase in either elastic or ine-

lastic buckling strength. Placing stiffeners at spacings greater than the

arc length corresponding to a 9 of about 2.5 will not increase the local

b-ickling strength of the shell and may possibly weaken it.

Another, more abstract conclusion obtained from these tests is related

to initial departures from sphericity or local "flat spots." If a spherical

shell contains a flat spot covering an arc length associated with a E of

about 2.2 or greater, the collapse strength of this shell would appear to

be relatively independent of the nominal radius of the shell. Based on the

local curvature of the "flat spot" rather than on the nominal curvature

which is commonly used, a new upper bound may be determined for the

collapse strength of an initially imperfect spherical shell. This obser-

vation is the basis of an analysis developed in Reference 13 which
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adequately predicts both the elastic and inelastic strength of 36 machined

models with local flat spots covering a relatively wide range of 0.

A stress analysis should be conducted on the Series SS shells as well

as on the other shells reported herein to more fully understand their be-

havior. It is anticipated that this will be undertaken in the near future.

SERIES DSS

Failure of each oi thy, Scrie DS5 z-•dels except the two thinnest

models (DSS-7 and DSS-8) occurred away from the boundary (see Figure

4). Thus, the boundary conditions did not have a severe effect on col-

lapse. This conclusion is -,upplemented by the atrain data presented in

Figures 7 and 8. The strain sensitivities plotted in Figure 7 show that

the edge effects did not cause excessive strains at the shell-boundary

ring juncture. It appears that these relatively low strains were primarily

the result of the taper at the juncture. Figure 8 shows that during the test

there was a change in the slope of the pressure-strain plots of gages

adjacent to the boundary ring. This indicates that the solid plug placed

inside the opening was not fitted sufficiently tight to support the boundary

ring during the early stages of the loading cycle. This also may have

reduced the boundary effects.

Since the boundary conditions of the Series DSS models were not

severe, the empirical formula for near-perfect spheres should be appli-

cable in calculating their collapse strength. Table 8 compares the

experimental collapse pressures with the collapse pressures calculated



ned TABLE 8

Summary of Ge9metric Parameters and Collapse Vressures
for Series DSS Models

aI P3 p

MODELMOD 0 Pexp avg P3 PE exp
ge- _deg psi psi psi psi PE PE

DSS-1 300 17.20 11,100 74.925 49,780 10,800 4.61 1.03
DSS-Z 300 16.84 11,375 74,630 52,690 11.660 4.52 0.98
DSS-3 300 25.57 4,720 69,310 10,520 4,810 2.19 0.98
DSS-4 300 19.38 8,400 73,565 31,390 8,420 3.73 1.00
DSS-5 300 30.21 2,800 57,555 5,500 3.250 1.69 0.86
DSS-6 300 30.84 2,925 64,305 4,800 2,975 1.61 0.98

e DSS-7 300 44.95 1,200 54,470 1,113 1,070 1.04 1.12
DSS-8 300 j_42.73 1,290 52,985 1,360 1,330 1.02 0.97

by using the empirical formula. Good agreement was obtained for each

model except DSS-5 and DSS-7 which were relatively unstable shells.

Model DSS-5 collapsed at a pressure 14 percent less than the calculated

-ily prc=sre, and Model DSS-7 collapsed at a pressure 12 percent above the

test caiculaied pressare. As in the c.ase of Model S-3, the relatively low col-

lapse pressure of Model DSS-5 may most likely be attributed to the

prtsence of local departures from sphericity or to a local reduction in the

strength of the 7075-T6 aluminum bar stock. The high collapse pressure

of Model DSS-7 is rather surprising in view of the fact that its strength

was most likcly reduced at least a small amount by the edge condition.

Thus, it is apparent that the sphericity of Model DSS-7 was extremely

good. Unfortunately. nu measurements were made of its initial contour.

However. this high collapse pressure of Model DSS-7 once again lends sup-

port to the validity of the classical theory when applied to periect spheres.
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SERIES SSS

The experimental collapse pressures of the Series SSS stiffened shells

are compared in Table 9 with the estimated collapse strength of the shells,

neglecting the stiffeners and the estimated collapse strength of equivalent

unstiffened shells of the same weight. Although installing stiffeners at

sufficiently close intervals increased the collapse strength of the spheri-

cal shells, in no case was the collapse strength of the stiffened shell as

great as would be expected for a machined unstiffened shell of the same

weight.

"T' ese tests were rather exploratory in nature and they do not by any

rr ,.'.' onstrate that effective stiffening systems cannot be developed.

TL,°- ,emonstrate, however, that certain types of stiffening systems

will not be effective. In so doing, these Series SSS tests support the

conclusion drawn from the Series SS tests; i.e., stiffeners must be

placed at relativeiy close intervals in order to i.acrease the collapse

strength of a spherical shell Each model having an unsuoported arc

length corresponding to values considerably in excess of 2.2 collapsed at

a pressure below that calculated for the unstiffened shell. Thuse models

were SSS-1, SSS-2, and SSS-10 through SSS-13. The remaining models

had relatively short unsupported arc lengths. Of these, the circumfer-

entially stiffened Models SSS-3 through SSS-9 had no increase in strength

or had only a marginal increase in strength over that predicted for the

respective shells, neglectiag the stiffeners. However, the appearance of
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these models after collapse suggests that 2heir strength was affected by

their boundary conditions. The models with both circumferential and

meridional stiffevers (Models SSS-14 through SSS-17) were considerabiy

stronger than predicted for the unstiffened portion only.

The benefits of stiffening in both the circumferential and meridional

direction or in the circumferential direction only appear worthy of

further investigation. This is particularly true for welded shells where

the efficiency of unstiffened shells is considerably less than that of

machined, unstiffened shells. Ho-vever, due to the inefficient distribution

of the material, the use of meridional stiffeners only shows little promise

of producing successful results.

The main obstacle in achieving efficient stiffening systems stems from

the resulting stress field which they produce. The stiffener resists load

in its axial direction only whereas the hydrostatic loading causes,

essentially, a uniform biaxial load to occur in an unstiffened spherical

shell. Since the stiffener offers no resistance to load in the plane normal

to the stiffener, it can be no more than half as efficient as the shell

material if buckling is neglected. Thus if strain hardening and three-

dimensional stress effects are neglected, the maximum pressure to be

achieved from a spherical shell with stiffeners in one direction only is

that pressure which, according to Equation [7], causes the stresses to

reach the yield point of the material. For spherical shells uniformly

stiffened in two directions, the maximum pressure to be achieved is that
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pressure which causes the average stresses in the stiffener-shell

combination to reach the yield point of the material. This pressure may

be determined by substituting an equivalent thickness into Equation [7].

This eqtivalent thickness is that of the shell and one stiffener only. The

stiffeners accounted for 50 to 60 percent of the total material of Models

SSS-14 through SSS-17. Since each of these models failed at stress

levels beyond the pro-sortional limit, it is not surprising that their col-

lapse pressure was on the order of 30 percent less than that calculated

foz the unstiffened sphere of the same weight.

A stiffened spherical shell may buckle in various modes, depending on

the stiffening system. Placing stiffeners in a single direction at rela-

tively large intervals will have no strengthening effect on a spherical

shell and may possibly have a slight weakening effect. A shell stiffened

in this manner will most likely fail by the formation of a small inward

lobe similar to the complete sphere. On the surface, it appears that the

buckling of spherical shells with closely spaced stiffeners in only one

direction is analogous to the axisymmetric buckling of short cylinders. 37

The buckling of those shells stiffened in two directions appears to be

closely associated with the strength of spherical caps as demonstrated in

Figures 11 and 12. In addition, however, the shell-stiffener combination

of both types of stiffening systems may buckle, particularly if relatively

small stiffeners are placed at extremely close intervals. It appears that

a sandwich spherical shell would effectively resist this overall mode of
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collapse and, thus, this shell is worthy of investigation. However,

serious problems in fabrication and "inservice" inspection of sandwich

spheres are visualized.

At the present time no theories are available for calculating the

buckling strength or the stress distribution of stiffened spherical shells.

It is apparent, therefore, that considerable study, both theoretical and

experimental, is required before rational designs of efficient stiffened

spheres may be achieved.

CONCLUSIONS

1. For design purposes, Equation [ 5 ] adequately predicts both the

elastic and inelastic strength of initially stress-free complete spheres

or of deep spheres with ideal boundaries whose local variations in radii

are less than about Z 1/Z percent of the shell thickness.

2. Whereas previous experiments on shallow spherical shells with

clamped edges recorded in the literature show a complete lack of

repeatability, the present models follow a very definite pattern. However,

no theory presently available in the literature may be used to adequately

predict their behavior throughout the range investigated.

3. A spherical segment with an arc length associated with a value of

the geometric parameter 8 of about 2.2 or greater is not strengthened by

its boundary. Thus, stiffeners must be placed at very close intervals in

order to increase the strength of spherical shells. Similarly, the strength

of an initially imperfect sphere is mainly dependent on the local curvature
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over a "flat spot" of c:itical length rat~ier than on the nominal curvature.

4. A small clamped spherical segment mnay be weaker than a larger

clamped segment. Thus, stiffening systems may weaken rather than

strengthen a spherical shell if placed at critical spacings.

5. Installing stiffeners in spherical 3hells at close intervals

increases their experimental collapse strength.

6. In no case was the experimental collapse strength of a stiffened

spherical shell as great as would be expected for a machined unstiffened

shell of the same weight. These tests do not demonstrate, however, that

effective stiffening systems cannot be developed.

ACKNOWLEDGMENTS

The authors acknowledge the significant contributions of Mr. Leonard

Giuffreda who conducted the hydrostatic tests and Messrs. John Collier

and George Junkin who assisted in the reduction and presentation of the

data. The Industrial Department is commended for skill in machining the

models to a very high degree of accuracy. In particular, the authors are

indebted to Messrs. Chauncey Reed and Glenwood Cooper for supervising

the machining processes.

S62

A-"i



REFERENCES

I. Abraham, L. H. and Lowy, M. J., "Shell Instability Problems as
Related to Design," National Advisory Space Administration TN
D-1510, p. I (Dec 1962).

2. Fung, Y. C. and Seckler, E. E., "Instability of Thin Elastic Shells,"
Proceedings of the First Symposium on Naval Structural Mechanics
(1960).

3. Timoshenko, S., "Theory of Elastic Stability," McGraw-Hill Book
Co., Inc., New York (1936).

4. Kloppel, K. and Jungbluth, 0., "Beitrag zum Durchschlagsproblem
Dunwandieger Kugelschalen (Versuche und Beme s sungsformeln),
(Contribution to the Durchschlag-Problem in Thin-Walled Spherical
Shells (Experiments and Design Formulas)," Der Stahlbau, Jahrg.

22, Heft 6, Berlin (1953).

5. Von Kirman, T. and Tsien, H. S., "The Buckling of Spherical Shells

by External Pressure," Journal of the Aeronautical Sciences, Vol. 7,

No. 2 (Dec 1939).

6. Friedrichs, K. 0., "On the Minimum Buckling Load for Spherical
Shells," Theodore von Karman Anniversary Volume, California
Institute of rechnology (1941).

7. Tsien, H. S., "A Theory for the Buckling of Thin Shells," Journal of
the Aeronautical Sciences, Vol. 9, No. 10 (Aug 1942).

8. Yoshimura, Y. and Uemura, M., "The Buckling of Spherical Shells
Due to External Pressures," Reports, Institute of Science and Tech-
nology, University of Tokyo, Vol. 3, p. 316 (1949).

9. Thompson, J. M. T., "The Elastic Instability of a Complete Spheri-
cal Shell," The Aeronautical Quarterly (May 1962).

10. Wedellsborg, B. W., "Critical Buckling Load on Large Spherical
Shells," Journal of the Structural Division, ASCE, Vol. 88, No. STI
(Feb 1962).

11. Krenzke, M. A., "Tests of Machined Deep Spherical Shells under
External Hydrostatic Pressure," David Taylor Model Basin Report
1601 (May 1962).

63



-- _6

12. Krenzke, M. A., "The Elastic Buckling Strength of Near-Perfect
Deep Spherical Shells with Ideal Boundaries," David Taylor Model

Basin Report 1713 (Jul 1963).

13. Krenzke. M. A. and Kiernan, T. 3., "The Effect of Initial Imper-
fections on the Collapse Strength of Deep Spherical Shells," David
Taylor Model Basin Report 1757 (in preparation).

14. Bijlaard, P. P., "Theory and Tests on the Plastic Stability of Plates
and Shells," Journal of the Aeronautical Sciences, Vol. 16, No. 9
(Sep 1949).

15. Gerard, G., "Plastic Stability Theory of Thin Shells," Journal of the
Aeronautical Sciences, Vol. 24, No. 4 (Apr 1957).

16. Lunchick, M. E., "Plastic Buckling Pressure for Spherical Shells,"
David Taylor Model Basin Report 1493 (Jul 1963).

17. Kiernan, T. J., "The Buckling Strength of Segmented HY-80 Steel
Hemispheres," David Taylor Model Basin Report 1721 (in prepa-
ration).

13. Krenzke, M. A., "Hydrostatic Tests of Conical Reducers between
Cylinders with and without Stiffeners at the Cone-Cylinder
Junctures," , David Taylor Model Basin Report 1187 (Feb 1959).

19. Krenzke, M. A. and Kiernan, T. J., "Structural Development of a
15,000- to 20,000-Foot Titanium Oceanographic Vehicle," David
Taylor Model Basin Report 1677 (Sep 1963).

20. Kiernan, T. J. and Krenzke, M. A., "Experimental Investigation of
Closures and Penetrations for Pressure Vessels of Composite Con-
struction," David Taylor Model Basin Report 1732 (in preparation).

21. Nott, J. A., "Structural Design of Viewing Ports for Oceanographic
Vehicles," David Taylor Model Basin Report 1737 (Mar 1963).

22. Feodosiev, V. I., "Calculation of Thin Clicking Membranes,"
Prikladnaia Matemarika i Mekhanika, Vol. X, p. 295 (1946).

23. Budiansky, B., "Buckling of Clamped Shallow Spherical Shells,"
Proceedings of the I.V.T. A.M. Symposium of the Theory of Thin
Elastic Shells, North Holland Publishing Company, Amsterdam,
p. 64 (1960).

64

" 5. _



24. Weinitschke, H., "On the Stability Problem for Shallow Spherical
Shell," Journal of Mathematics and Physics, Vol. 38, No. 4, p. 209
(Jan 1960).

25. Thurston, G. A., "A Numerical Solution of the Non-Linear Equations
for Axisymrnetric Bending of Shallow Spherical Shells," Journal of
Applied Mechanics, Vol. 28, No. 4, p. 557 (Dec 1961).

2.6. Kaplan, A. and Fung, Y. C., "A Non-Linear Theory of Bending and

Buckling of Thin Elastic Shallow Spherical Shells," National Advisory
Committee for Aeronautics TN 3212 (Aug 1954).

27. Reiss, E. L., et al., "Non-Linear Deflections of Shallow Spherical
Shells," Journal of the Aeronautical Sciences, Vol. 54, p. 533
(Jul 1957).

28. Archer, R. R., "Stability Limits for a Clamped Spherical Shell
Segment under Uniform Pressures," Quarterly of Applied Mathe-
matics, Vol XV, p. 355 (Jan 1958).

29. Von Willich, G. P. R., "The Elastic Stability of Thin Spherical
Shells," Journal of the Engineering Mechanics Division, Proceedings
of the American Society of Civil Engineers, Vol. 185, No. EM. I
(Jan 1959).

30. Homewood, R. H., et al., "Experimental Investigation of the Buck-
ling Instability of Monocoque Shells," Experimental Mechanics, Vol.
1, No. 3, p. 88 (Mar 1961).

31. Chen, W. L., "Effect of Geometrical Imperfections on the Elastic
Buckling of Shallow Spherical Shells," Sc.D. Thesis, Department of
Civil and Sanitary Engineering, Massachusetts Institute of Tech-
nology (Jan 1959).

32. Weinitschke, H., "Asymmetric Buckling of Clamped Shallow Spheri-
cal Shells," National Advisory Space Administration TN D-1510,
p. 481 (Dec 1962).

33. Hodge, P. G., "Plastic Analysis of Structures," McGraw-Hill Book
Co., Inc., New York (1959).

34. Roth, R. S., "Plastic Buckling of Thin Shallow Spherical Shells,"
Division of Engineering and Applied Physics, Harvard University
Technical Report No. 13 (May 1962).

65

S--.---- -----.-.-- ~--- I-



35. Kiernan, T. T.. "The Effects of Boundary Conditions on the Collapse
Strength of Michined Hemispherical Shells under External Hydro-
"static Pres sure," David Taylor Model Basin Report (in preparation).

36. Klein, B., "Further Remarks on the Collapse Pressure of Uniformly
Loaded Spherical Shells,," Journal of the Aeronautical Sciences, Vol.
24, p. 309 (1957).

37. Lunchick, M. E., "Plastic Axisymmetric Buckling of Ring-Stiffened
Cylindrical Shells Fabricated from Strain-Hardening Materials and
Subjected to External Hydrostatic Pressure," David Taylor Modelel
Basin Report 1393 (Jan 1961).

66



INITIAL DISTRIBUTION

Copies Copies

15 CHBUSHIPS i N?4S8 & DO Co
2 Sci & Res (Code 442) 1 SUPSHIP. Pascagoula
1 Lab Mgt (Code 320)
3 Tech Lib (Code 210L)I Inal hpdgCr
I Struc Mech, Hull Mat & Fab (Code 341A) IgasShbdgCr
1 Prelim Des Br (Code 420) 1 SUPSHIP, Camden
1 Prelim Des Sec (Code 421) 1 New York Shipbldg
1 Ship Protec (Code 423)
1 Hull Des Br (Code 440) 1 DIR DEF, R & E, Attn: Tech Library
1 Struc Sec (Code 443)

2 Sub Br (Code 525) 1 CO, IJSNROTC & NAVADMINU, MIT

1 Pres yes Sec (Code 651F) 1 0 in C, PGSCOL, Webb

2 CH-ONRI IAL nvoWahntnSetl
I Struc Mech Br (Code 439)1DIALUivoWahntSete
1 Undersea Programs (Code 466) 1 NAS, Attn: Comm on Undersea Wi.rtare

4 CNO 1 Prof. J. Kempner, PI8
I Plans, Programs & Req Br (Op 311)
1 Tech Anal & Adv Gr (Op) 07T) 1 Dr. E. Wenk, Jr., The White House

1 Sub Program Br (OP 713)1 DrR.eafS I
1 Tech Support Br (Op 725)1 DrR.D arSR

10 CDR, DOC I Mr. Leonard P. Zick, Chicago Bridge & Iron Co.

I CO & DIR, USNMEL I Dean V.L. Salerno, Fairleigh Dickinson Univ.

I CDR, USNOL 1 Prof. E.0. Waters, Yale Univ

I DIR, USNRL (Code 2027), 2 Mr. C.F. Larson, Sec, Welding Research Council

1 CO & DIR, USNUSI 1 Prof. Bernard Budiansky, Harvard Uliv

1 CO & DIR, USNEL I Mr. J. Mayor, WHOi

1 CDR, USNOTS, China Lake

I CDR, USNOTS, Pasadena

1 CO. USNUOS

2 NAYSHIPYD PTSMH

2 NAYSHIPYD MARE

I NAYSHIPYD CHASN

I SUPSHIP, Groton

1 EB Div. Gen Dyn CU~P

I SUPSHIP, Newport '4ews

67N1t



22

z4

5: 5 :F02 7 i
1 52 -C

z - i , c

- C-- - - T

cr.. na -; . a z . m 0 a

j r - 's
C- rU C-

* * a

- :j %- c I - a

if z*1 A 02

S £ .a u5 U' Sa 5U
2~~ 2 * .xa 3' 7-

a~ ~ ~ i= :7 2ý .

77 c -C a



-T .5 7Z

30 * a ,

7; -1 Z

=- = 
C 5 z

a E ~

- aS 2-S a

aS A

c c

-- --o~ !-0

: : -F 7 C JR
- -5 C,

S: Z;: T; Z

-rC.C

Z x~ c

I r 2


